ELECTROSTATICS

Electrostatics

- **Electrostatics** \rightarrow the study of charges at rest.
 - Static electricity
- 3 types of subatomic particles:

Proton (p ⁺)	Neutron (n°)	Electron (e ⁻)
In nucleus	In nucleus	Outside nucleus
Tightly bound	Tightly bound	Weakly bound
Positive charge	No charge	Negative charge
Massive	Massive	Not very massive

- In the majority of cases, only the negative charges (e⁻) will be mobile.

- **Neutral** objects \rightarrow have equal amounts of + and charges.
 - > No net electrical force

Electric Force

- Action at a distance force
 - > Aka a field force
- Opposite charges attract, like charges repel.
 - $\blacktriangleright \quad \text{Attractive forces} \rightarrow \text{ at least one object must be charged if attraction is present.}$
 - $\blacktriangleright \quad \text{Repulsive forces} \rightarrow \text{both objects must be charged if there is repulsion.}$
- **Polarization** \rightarrow the process of separating opposite charges in an object.
 - \blacktriangleright I.e., creating + and poles

Inducing Electron Movement Within a Conductor

- Law of Conservation of Charge \rightarrow the total charge within a system *must* be conserved.
 - > Charges can't magically appear or disappear.
 - > Protons and electrons must be accounted for.

Charging

- Charging by friction → when two objects rub together, it's possible for electrons to transfer between them.
 - > **Insulators** \rightarrow hold on to e⁻ tightly.
 - **Conductors** \rightarrow hold on to e⁻ loosely. Allow charges to flow freely.

- Charging by conduction → transferring charge by physically touching two differently charged objects.
 - If you touch a charged object to a neutral object, the charge will spread over both objects uniformly, leaving both charged.
 - A positively charged object brought into contact with a neutral object will steal e⁻.
 - > Only e⁻ are transferred.

Charging a Neutral Object by Conduction

about uniformly.

Charging a Neutral Object by Conduction

A neutral metal sphere rests upon an insulating platform. When the + aluminum plate is touched to the metal sphere, electrons are drawn off the sphere and onto the aluminum plate.

The aluminum plate has less excess + charge and the metal sphere now has an excess of + charge.

- Charging by induction → Charging an object without actually touching it.
 - Involves using polarization to charge the object.

The presence of a - charge induces e⁻ to move from sphere A to B. The twosphere system is polarized.

Sphere B is separated from sphere A using the insulating stand. The two spheres have opposite charges.

The excess charge distributes itself uniformly over the surface of the spheres.

Diagram iv.

- **Ground** \rightarrow a large object that serves as an infinite source or sink of e⁻.
 - Ex: the Earth. Grounding something allows for charges to flow in/out of the Earth itself to prevent charge buildup.

Two metal spheres

are mounted on

insulating stands.

Coulomb's Law

- 1785 \rightarrow Charles Augustin de Coulomb found that electrical force is similar to gravitational force.
 - **b** Both follow an *inverse square law*.

- Coulomb's Law

$$F_E = \frac{kq_1q_2}{r^2}$$

Variable	Meaning	Units	
F _E	Electric force	Newtons (N)	
k	Coulomb's constant	Newton meters squared per	
		Coulomb square (Nm^2/C^2)	
q_1 and q_2	Charges	Coulombs (C)	
Coulomb's constant: $k = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$			

Particle	Charge (C)	Mass (kg)
Electron	-1.6 x 10 ⁻¹⁹	9.11 x 10 ⁻³¹
Proton	1.6 x 10 ⁻¹⁹	1.67 x 10 ⁻²⁷
Neutron	0	1.67 x 10 ⁻²⁷

Example Problem 1

A Hydrogen atom consists of an electron moving about a proton at an avg distance of 0.53×10^{-10} m. Find the electric and gravitational forces acting between the two particles.

Electric Field

- Electric field \rightarrow An area surrounding a charge in which an object will experience an electric force.
 - > The amount of force and the size of the electric field depend on the source charge.

$$E = \frac{F_E}{q}$$

Variable	Meaning	Units
F _E	Electric force	Newtons (N)
Е	Electric field	Newtons per coulomb (N/C)
q	Test charge	Coulombs (C)

Example Problem 2

A positive test charge of $5.0 \ge 10^{-6}$ C is in an electric field that exerts a force of $2.0 \ge 10^{-4}$ N on it. What is the magnitude of the electric field at the location of the test charge?

- The test charge is charge used to *test* the strength of an electric field.
- The source charge is the source of the field.

- The direction of the electric field depends on whether the source is positively or negatively charged.
 - > The *positive* direction is the direction that a positive test charge would be pushed or pulled.
 - Electric field lines always point away from positive source charges (source) and into negative charges (sinks).
 - Electric field lines *do not* cross.
 - > Density of the field lines indicate strength of the field.

Other Charge Configurations

Two Negatively Charged Objects

A Positively and a Negatively Charged Object

Electric Potential Difference

- Electric potential difference \rightarrow the change in electric potential energy
 - > Also called: electric potential, potential difference, voltage
 - > *Not* the same thing as electric potential energy.
- Electric potential energy \rightarrow Depends on the amount of charge and the distance from the source charge.

- Doing work against an electric field increases the amount of electric potential energy.
 - > Also increases the electric potential.

$$\Delta V = \frac{W}{Q} = \frac{\Delta E}{Q}$$

Variable	Meaning	Units
ΔV	Electric potential	Volts (V)
W	Work	Joules (J)
Q	Charge	Coulombs (C)
ΔΕ	Change in electric potential energy	Joules (J)

- 1 V = 1 J/C

- Only differences in potential energy are important.
 - Work done against the electric field increases PE, work done by the electric field decrease PE.
 - > The work done moving an charge from point A to B is independent of the path taken.

Example Problem 3

A small sphere carrying a + charge of 10 micro-Coulombs is moved against an E field through a potential difference of 12.0 V. How much work was done by the applied force in raising the potential of the sphere?

Looking Ahead to Circuit Electricity

- Internal circuit \rightarrow Where energy is supplied to a charge.
 - ► Ex: battery
 - ▶ It's where electric potential is increased
- **External circuit** \rightarrow the charge moving through the wires.
- **Electric pressure** \rightarrow Charges naturally move from high potential to low potential.
 - ▶ Similar to a water slide.

Internal vs. External Circuit

