ELECTROSTATICS

Electrostatics

- Electrostatics \rightarrow the study of charges at rest.
$>$ Static electricity
- 3 types of subatomic particles:

Proton (\mathbf{p}^{+})	Neutron (nº	Electron (\mathbf{e}^{-})
In nucleus	In nucleus	Outside nucleus
Tightly bound	Tightly bound	Weakly bound
Positive charge	No charge	Negative charge
Massive	Massive	Not very massive

- In the majority of cases, only the negative charges (e^{-}) will be mobile.
- Neutral objects \rightarrow have equal amounts of + and - charges.
$>$ No net electrical force

Electric Force

- Action at a distance force
$>$ Aka a field force
- Opposite charges attract, like charges repel.
$>$ Attractive forces \rightarrow at least one object must be charged if attraction is present.
$>$ Repulsive forces \rightarrow both objects must be charged if there is repulsion.
- Polarization \rightarrow the process of separating opposite charges in an object.
$>$ I.e., creating + and - poles
Inducing Electron Movement Within a Conductor

A neutsal pop restingon an insulatingstand

With a negative object held neadyy,
electrons are repelled and induced into moving to the opposite side of the can.

Change within the can is polarized-separated into opposites.

- Law of Conservation of Charge \rightarrow the total charge within a system must be conserved.
$>$ Charges can't magically appear or disappear.
$>$ Protons and electrons must be accounted for.

Charging

- Charging by friction \rightarrow when two objects rub together, it's possible for electrons to transfer between them.
$>$ Insulators \rightarrow hold on to e^{-}tightly.
$>$ Conductors \rightarrow hold on to e- loosely. Allow charges to flow freely.

- Charging by conduction \rightarrow transferring charge by physically touching two differently charged objects.
$>$ If you touch a charged object to a neutral object, the charge will spread over both objects uniformly, leaving both charged.
> A positively charged object brought into contact with a neutral object will steal e .
>Only e^{-}are transferred.

Charging a Neutral Object by Conduction

Charging a Neutral Object by Conduction

- Charging by induction \rightarrow Charging an object without actually touching it.
$>$ Involves using polarization to charge the object.

Charging by Induction

- Ground \rightarrow a large object that serves as an infinite source or sink of e-.
$>$ Ex: the Earth. Grounding something allows for charges to flow in/out of the Earth itself to prevent charge buildup.

Coulomb's Law

- $1785 \rightarrow$ Charles Augustin de Coulomb found that electrical force is similar to gravitational force.
$>$ Both follow an inverse square law.

- Coulomb's Law

$$
F_{E}=\frac{k q_{1} q_{2}}{r^{2}}
$$

Variable	Meaning	Units
F_{E}	Electric force	Newtons (N)
k	Coulomb's constant	Newton meters squared per Coulomb square $\left(\mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$
q_{1} and q_{2}	Coulombs (C)	
\quad Coulomb's constant: $\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$		Ches

Particle	Charge (C)	Mass (kg)
Electron	-1.6×10^{-19}	9.11×10^{-31}
Proton	1.6×10^{-19}	1.67×10^{-27}
Neutron	0	1.67×10^{-27}

Example Problem 1

A Hydrogen atom consists of an electron moving about a proton at an avg distance of $0.53 \times 10^{-10} \mathrm{~m}$. Find the electric and gravitational forces acting between the two particles.

Electric Field

- Electric field \rightarrow An area surrounding a charge in which an object will experience an electric force.
$>$ The amount of force and the size of the electric field depend on the source charge.

$$
E=\frac{F_{E}}{q}
$$

Variable	Meaning	Units
F_{E}	Electric force	Newtons (N)
E	Electric field	Newtons per coulomb (N/C)
q	Test charge	Coulombs (C)

Example Problem 2

A positive test charge of $5.0 \times 10^{-6} \mathrm{C}$ is in an electric field that exerts a force of $2.0 \times 10^{-4} \mathrm{~N}$ on it. What is the magnitude of the electric field at the location of the test charge?

- The test charge is charge used to test the strength of an electric field.
- The source charge is the source of the field.

Source Change

- The direction of the electric field depends on whether the source is positively or negatively charged.
$>$ The positive direction is the direction that a positive test charge would be pushed or pulled.
$>$ Electric field lines always point away from positive source charges (source) and into negative charges (sinks).
$>$ Electric field lines do not cross.
$>$ Density of the field lines indicate strength of the field.

Conceptual Example 1

Which of the objects above has the greatest charge? Is it positive or negative?

Electric Potential Difference

Diagram A
$\left(\underset{\sim}{\mathrm{E}} \stackrel{\mathrm{B}}{ }{ }^{\mathbf{A}}\right.$

High Fi

Diagram B
$\oplus^{\text {上 }}$: :

Diagram C

Diagram D

- Electric potential difference \rightarrow the change in electric potential energy
$>$ Also called: electric potential, potential difference, voltage
$>$ Not the same thing as electric potential energy.
- Electric potential energy \rightarrow Depends on the amount of charge and the distance from the source charge.
 electric potential energy.
$>$ Also increases the electric potential.

$$
\Delta V=\frac{W}{Q}=\frac{\Delta E}{Q}
$$

Variable	Meaning	Units
$\Delta \mathrm{V}$	Electric potential	Volts (V)
W	Work	Joules (J)
Q	Charge	Coulombs (C)
$\Delta \mathrm{E}$	Change in electric potential energy	Joules (J)

$$
-\quad 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}
$$

- Only differences in potential energy are important.
$>$ Work done against the electric field increases PE, work done by the electric field decrease PE.
$>\quad$ The work done moving an charge from point A to B is independent of the path taken.

Example Problem 3

A small sphere carrying a + charge of 10 micro-Coulombs is moved against an E field through a potential difference of 12.0 V . How much work was done by the applied force in raising the potential of the sphere?

Conceptual Example 2

Looking Ahead to Circuit Electricity

- Internal circuit \rightarrow Where energy is supplied to a charge.
$>$ Ex: battery
$>$ It's where electric potential is increased
- External circuit \rightarrow the charge moving through the wires.
- Electric pressure \rightarrow Charges naturally move from high potential to low potential.
$>$ Similar to a water slide.
Intemal vs. Extemal Circuit

